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History & Motivation

▶ Original author: Pieter David (left CMS)
▶ Development started in 2018, after recognizing increasing complexity of
multi-year analyses

▶ Goal: find a way to write analyses that was
▶ Easy to write, modify, share
▶ Fast

→ usually one or the other (or neither), rarely both…
▶ CMS’s NanoAOD + RDataFrame: a match made in heaven?
▶ RDataFrame reduces boilerplate, declarative, but: writing full analysis
(with all systematics, bookkeeping…) can still be daunting
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RDataFrame: use it directly? …

Typical example: dimuon invariant mass (*):

Using C++ lambdas:
using ROOT::Math::VectorUtil::InvariantMass;
using LorentzVector = ROOT::Math::LorentzVector<ROOT::Math::PtEtaPhiM4D<float>>;
df.Define("Dimuon_mass",
[] (const auto& pt, const auto& eta, const auto& phi, const auto& m) {

return InvariantMass(LorentzVector(pt[0], eta[0], phi[0], m[0]),
LorentzVector(pt[1], eta[1], phi[1], m[1]));

}, {"Muon_pt", "Muon_eta", "Muon_phi", "Muon_mass"}
).Histo1D(..., "Dimuon_mass", ...);

How about:

▶ Additional selections
▶ Adding collection cross-cleaning
▶ Sorting all quantities associated with an object
▶ For jets: repeat for all systematic variations
▶ …

(*): not the only way to do it, but conclusion remains
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RDataFrame: use it directly? …

Typical example: dimuon invariant mass (*):

Or, using JITing:
df.Define("Dimuon_mass_v2",

"InvariantMass("
"LorentzVector(Muon_pt[0], Muon_eta[0], Muon_phi[0], Muon_mass[0]),"
"LorentzVector(Muon_pt[1], Muon_eta[1], Muon_phi[1], Muon_mass[1]))"

).Histo1D(..., "Dimuon_mass_v2", ...);

How about:

▶ Additional selections
▶ Adding collection cross-cleaning
▶ Sorting all quantities associated with an object
▶ For jets: repeat for all systematic variations
▶ …

(*): not the only way to do it, but conclusion remains
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Enter bamboo: decorated trees

In bamboo, this reduces to:
from bamboo import treefunctions as op
from bamboo.plots import Plot

Plot.make1D(..., op.invariant_mass(tree.Muon[0].p4, tree.Muon[1].p4), ...)

▶ Idea: decorate tree→ provide a view of the event content as a set of
(collections of) physics objects in the form of “proxies” (python objects)

▶ User builds expressions (cuts, variables, …) from these proxies
▶ When done: Bamboo converts expressions to appropriate (C++) strings,
builds RDataFrame, runs event loop

▶ Same user-facing proxy (e.g. tree.Jet) can represent different
collections/branches: systematic variations automatically handled
(different columns in generated RDF graph)
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Under the hood: proxies and operations

▶ Operations (backend):
▶ Can be directly converted to C++ strings for compiling
▶ Simple python objects, immutable→ can be modified through a clone, e.g.

for systematic variations
▶ Proxies (user-facing):

▶ Represent objects in the tree, and quantities derived from those
▶ Behave like the value they represent (list, float, LorentzVector, …)
▶ Wrap operations (can be several, e.g. for systematics)

▶ Fairly complete list of implementations to work with proxies
▶ Tree proxies automatically generated based on the branches found

▶ “Groups” (tree.pdf.x1), collections (tree.Muon[0].pt), objects with
methods (tree.Muon[0].p4.E()), refs. to other collections
(tree.Muon[0].Jet.btagDeepB), indices (SortedJets[0].idx)

▶ Proxy mechanism not tied to NanoAOD: TTree decoration can be adapted
to ∼ any tree format, see e.g. Snowmass [1][2], Delphes
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Proxies for more complex tasks

▶ Select muon and jets
▶ Clean jets from selected muons, sort jet collection
▶ Build all unique combinations of 3 jets
▶ Find 3-jet combination with total invariant mass closest to given value
▶ Get b-tag value of leading jet of among those 3 jets

muons = op.select(tree.Muon, lambda mu:
op.AND(mu.pt > 30., op.abs(mu.eta) < 2.4))

jets = op.select(tree.Jet, lambda j: op.AND(j.pt > 30., op.abs(j.eta) < 2.4))

cleanedJets = op.select(jets, lambda j: op.NOT(
op.rng_any(muons, lambda mu: op.deltaR(mu.p4, j.p4) < 0.4)))

# tree.Jet is not guaranteed to be sorted (jet smearing)
sortedJets = op.sort(cleanedJets, lambda j: -j.pt)

triJets = op.combine(sortedJets, N=3)

XjjjCand = op.rng_min(triJets, lambda jjj:
op.abs(op.invariant_mass(jjj[0].p4 + jjj[1].p4 + jjj[2].p4) - mX))

leadCandBtag = XjjjCand[0].bTagDeepB

5



Selecting and plotting events: basic building blocks

Selection object
▶ Holds cuts and weights
▶ Start from inclusive selection (all events), unit weight
▶ Gradually refine selection: add cuts and/or weights
▶ RDF: Filter nodes

Declaring a plot
▶ Requires only selection object, and plotted quantity(ies)
▶ Fill single or multiple entries (collection) (per-entry weight supported)
▶ RDF: HistoND nodes (only N ≤ 3 supported atm)
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Selecting and plotting events: basic building blocks

Selection object
▶ Holds cuts and weights
▶ Start from inclusive selection (all events), unit weight
▶ Gradually refine selection: add cuts and/or weights
▶ RDF: Filter nodes

Declaring a plot
▶ Requires only selection object, and plotted quantity(ies)
▶ Fill single or multiple entries (collection) (per-entry weight supported)
▶ RDF: HistoND nodes (only N ≤ 3 supported atm)

More advanced functionalities follow ∼ same interface:

▶ Selections for data-driven estimations
▶ Categorized selections (e.g. concisely handle multiple lepton flavours)
▶ … 6

https://bamboo-hep.readthedocs.io/en/latest/recipes.html#data-driven-backgrounds-and-subprocesses
https://bamboo-hep.readthedocs.io/en/latest/apiref.html?highlight=categorizedselection#bamboo.plots.CategorizedSelection


Selecting and plotting events: basic building blocks

Selection object
▶ Holds cuts and weights
▶ Start from inclusive selection (all events), unit weight
▶ Gradually refine selection: add cuts and/or weights
▶ RDF: Filter nodes

Declaring a plot
▶ Requires only selection object, and plotted quantity(ies)
▶ Fill single or multiple entries (collection) (per-entry weight supported)
▶ RDF: HistoND nodes (only N ≤ 3 supported atm)

Notes:

▶ Skims also supported: Snapshot (more later)
▶ Define nodes also inserted in the RDF graph (typically before first Filter
node that uses them, to avoid recomputing quantities) 6

https://bamboo-hep.readthedocs.io/en/latest/recipes.html#producing-skimmed-trees


Alternative “backends”

Different methods of constructing the RDataFrame:

1. “Lazy” (default):
▶ First register all selections, plots, …in Bamboo
▶ Then create the RDataFrame
▶ Advantage: ordering of Define/Filter nodes handled by Bamboo

2. “Debug”:
▶ Create RDataFrame nodes eagerly as user builds expressions in Bamboo
▶ Useful to detect problems with RDF building earlier
▶ User has to think about ordering of definitions for efficiency

3. “Compiled”:
▶ As “lazy”, but no JITing: generate full C++ code for standalone executable,

call external compiler
▶ Advantage: can use compiler optimizations inject debugging symbols, …
▶ In practice, compilation of realistic analysis with optimizations is too slow
▶ Considering to discontinue (optimizations now usable in cling, debugging

hopefully soon)
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Selecting and plotting events
from bamboo.plots import Plot, EquidistantBinning as EqBin
from bamboo import treefunctions as op

def definePlots(self, t, noSel, sample=None, sampleCfg=None):
plots = []

muons = op.select(t.Muon, lambda mu:
op.AND(mu.pt > 30., op.abs(mu.eta) < 2.4))

muSel = noSel.refine("1mu", cut=(op.rng_len(muons) == 1))

plots.append(Plot.make1D("mu_pt", muons[0].pt, muSel,
EqBin(100, 30., 130.), title="Muon pt"))

jets = op.select(t.Jet, lambda j: op.AND(j.pt > 30., os.abs(j.eta) < 2.4))

mu4JetSel = muSel.refine("1mu_4j", cut=(op.rng_len(jets) >= 4))

plots.append(Plot.make1D("jet_pt", op.map(jets, lambda j: j.pt),
mu4JetSel, EqBin(100, 30., 130.), title="All jets pt"))

return plots

Caveat: merging selections is not possible (limitation of RDF); helpers
provided to add histograms from distinct selections in a postprocessing step
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Systematic uncertainties

▶ If an expression is marked as having systematic variations, Bamboo will
automatically branch the RDF graph, create histogram variations only
when needed

▶ Single event loop, all systematics computed on-the-fly
▶ Variations are solely identified by their full name, not limited to up/down
E.g. psISRup, psISRdown, pdf1, pdf2 …

▶ Different expressions with the same variation name are varied together
→ correlate e.g. effect of JES on jet kinematics and b-tagging SFs

▶ Configuring simple weight-based systematic uncertainties:
psISRSyst = op.systematic(1., name="psISR",

up=tree.PSWeight[2], down=tree.PSWeight[0])

pdfSysts = op.systematic(1.,
**{ f"pdf{i}": tree.LHEPdfWeight[i] for i in range(1, 101) })

selWithSysts = noSel.refine("withSysts", weight=[psISRSyst, pdfSysts])

▶ 1 variation = 1 histogram: shows its limits with many variations
→ use Josh Bendavid’s narf? (systematic index as extra dimension) 9

https://github.com/bendavid/narf


Running an analysis

Running an analysis in Bamboo requires:

1. An analysis module deriving from a base class→ reuse Bamboo’s
facilities for sample bookkeeping, job submissions, etc.

2. A configuration file (YAML): mostly for specifying input samples

class BasicPlots(NanoAODHistoModule):
def definePlots(self, tree, noSel, sample=None, sampleCfg=None):

...
return plots

Then, just run it: % bambooRun -m myAnalysis.py:BasicPlots myConfig.yml

Result: one file per sample, containing all histograms/skims
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Running an analysis

Running an analysis in Bamboo requires:

1. An analysis module deriving from a base class→ reuse Bamboo’s
facilities for sample bookkeeping, job submissions, etc.

2. A configuration file (YAML): mostly for specifying input samples

tree: Events
eras:

2018UL:
luminosity: 59830.

samples:
TTToSemiLeptonic__2018UL:

era: 2018UL
db: das:/TTToSemiLeptonic_TuneCP5_13TeV-powheg-pythia8/.../NANOAODSIM
cross-section: 365.35
generated-events: genEventSumw

Then, just run it: % bambooRun -m myAnalysis.py:BasicPlots myConfig.yml

Result: one file per sample, containing all histograms/skims
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Running an analysis

Running an analysis in Bamboo requires:

1. An analysis module deriving from a base class→ reuse Bamboo’s
facilities for sample bookkeeping, job submissions, etc.

2. A configuration file (YAML): mostly for specifying input samples

Then, just run it: % bambooRun -m myAnalysis.py:BasicPlots myConfig.yml

Result: one file per sample, containing all histograms/skims

▶ Analysis description is contained in user module + config file
▶ Independent of how the events are processed
▶ Single entry point: bambooRun → choose processing mode through
command-line arguments, no changes to analysis code necessary
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Running an analysis

Running an analysis in Bamboo requires:

1. An analysis module deriving from a base class→ reuse Bamboo’s
facilities for sample bookkeeping, job submissions, etc.

2. A configuration file (YAML): mostly for specifying input samples

Then, just run it: % bambooRun -m myAnalysis.py:BasicPlots myConfig.yml

Result: one file per sample, containing all histograms/skims

Need one RDF graph/sample:

▶ Different data-taking eras→ different cuts, scale factors, systematics
▶ Differences in data vs. MC (background) vs. MC (signal)
▶ Specific selections for data-driven estimations
▶ MC: sample-dependent uncertainties
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Processing modes: sequential

% bambooRun ... [--distributed sequential] [--threads 4]

▶ Default mode, mostly useful for quick tests
▶ Small memory overhead from every RDF
▶ Advantage: JITted symbols can be reused across graphs
▶ Can use implicit multithreading or distributed RDF

bambooRun
Sample 1:
build graph

Sample 1:
process

Sample 2:
build graph

Sample 2:
process

Post-process
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Processing modes: parallel

% bambooRun ... --distributed parallel [--threads 4]

▶ Use RDF::RunGraphs
▶ Need to build all RDF graphs first
▶ Small memory overhead from every graph
▶ Advantage: JITted symbols can be reused across graphs
▶ Can use implicit multithreading or distributed RDF

bambooRun
Sample 1:
build graph

Sample 2:
build graph

Sample 1:
process

Sample 2:
process

Post-process
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Processing modes: batch

% bambooRun ... --distributed driver [--threads 4]

▶ Submit jobs on a cluster (HTCondor, Slurm supported)
▶ Monitoring loop, combines results for one sample as soon as its jobs are
done→ no overhead

▶ Some duplication of work: every job builds a graph (→ IMT on nodes)
▶ Usual limitations of batch processing: manual splitting, job failures…

bambooRun

Sample 1:
build graph

Sample 1:
process files N//2-N

Sample 1:
build graph

Sample 1:
process files 1-N//2

Sample 2:
build graph

Sample 2:
process files 1-N//2

Sample 2:
build graph

Sample 2:
process files N//2-N

Hadd

Hadd

Post-process
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Distributed processing

% bambooRun ... --distributed parallel --distrdf-be dask_slurm

▶ Experimental support of distributed RDataFrame with Dask or Spark
▶ In practice, currently most relevant is Dask with jobqueue
▶ Initial difficulties in properly propagating environment & dependencies
to workers, now solved

▶ Optimal splitting (number of tasks) not obvious
Every task needs to re-build graph + JIT? overhead?

▶ Still missing: Numba support (WIP?)

Dask/jobqueue experience
▶ Observed scaling issues (large graphs): fixed soon?
▶ Stability issues (killed workers, timeouts): can error handling be
improved in distRDF or should this be understood/solved in Dask?

▶ “Stuck” clusters: all jobs cancelled, but client keeps running
▶ Properly configuring & tuning Dask-distributed/jobqueue is delicate…
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Customization hooks

Users’ modules can also easily:

▶ Add command-line arguments, passed from bambooRun
▶ Extend the configuration file syntax (e.g. better handling of
samples/eras)

▶ Configure the tree decorations (e.g. jet systematics)
▶ Further post-process the outputs, profit from available metadata
Some post-processing typically necessary to use results e.g. in Combine
(rescale, move, rename histograms)

class BasicPlots(NanoAODHistoModule):
def addArgs(self, parser):

...
def customizeAnalysisCfg(self, analysisCfg):

...
def prepareTree(self, tree, sample=None, sampleCfg=None):

...
def postProcess(self, taskList, config=None, workdir=None, resultsdir=None):

...
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More features and recipes

Bamboo has been used for a variety of analyses: searches, unfolding, future
studies; data-driven or MC-driven; using MVAs/DNNs; …
→ fairly complete set of features and recipes collected, e.g. for:

16
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More features and recipes

Bamboo has been used for a variety of analyses: searches, unfolding, future
studies; data-driven or MC-driven; using MVAs/DNNs; …
→ fairly complete set of features and recipes collected, e.g. for:

▶ Evaluating MVAs: TMVA (RReader), Tensorflow, PyTorch, ONNX Runtime
(C/C++ APIs)

from bamboo.treefunctions import mvaEvaluator
mu = tree.Muon[0]
dnn = mvaEvaluator("dnn.pt", mvaType="Torch")
dnn_out = dnn(mu.pt, mu.eta, mu.phi)

ele_bdt = op.mvaEvaluator("BDT.weights.xml", mvaType="TMVA")
ele_MVA = op.map(tree.Electron, lambda el: ele_bdt(el.dxy, el.sip3d, ...)[0])
# attach MVA outputs to electron proxies
tree.Electron.valueType.mva = treedecorators.itemProxy(ele_MVA)
# can then use as
tree.Electron[0].mva

▶ Limitation of RDF: no batch evaluation of MVAs
→ complex DNNs can be slow (improved by SOFIE!?)

▶ Need to produce skims for MVA training 16

https://bamboo-hep.readthedocs.io/en/latest/recipes.html
https://root.cern/doc/master/classTMVA_1_1Experimental_1_1RReader.html


More features and recipes

Bamboo has been used for a variety of analyses: searches, unfolding, future
studies; data-driven or MC-driven; using MVAs/DNNs; …
→ fairly complete set of features and recipes collected, e.g. for:

▶ Producing skims: add new branches, keep input branches, …skims can
then also be reprocessed by Bamboo

twoMuSel = noSel.refine("twoMuons", cut=[ op.rng_len(muons) > 1 ])
plots.append(Skim("dimuSkim", {

# copy from input file
"run": None, "event": None,
# add new branches
"dimu_M": op.invariant_mass(muons[0].p4, muons[1].p4),

}, twoMuSel,
# also keep all electron branches
keepOriginal=Skim.KeepRegex("^(n)?Electron.*$")))
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More features and recipes

Bamboo has been used for a variety of analyses: searches, unfolding, future
studies; data-driven or MC-driven; using MVAs/DNNs; …
→ fairly complete set of features and recipes collected, e.g. for:

Storage needs & skims
▶ Typical workflow: 1) request local replica (Rucio) of NanoAOD samples
(O(10) TB at T2/T3); 2) Produce final histograms in one go

▶ Or, skim with Bamboo (remote xrootd access: slow, but do it once), store
only skims locally
(but variations still computed on-the-fly→ lightweight skims!)

▶ Skims follow same (NanoAOD) schema→ same Bamboo user code can
can produce and use skims, see example

▶ Writing skims as RNtuple could be interesting! (not supported yet in RDF)
▶ Essentially a caching issue... possibilities to improve site caching, avoid
manual skimming step & local replicas?

16

https://bamboo-hep.readthedocs.io/en/latest/recipes.html
https://gitlab.cern.ch/cp3-cms/bamboo/-/blob/master/examples/preselectskim.py


More features and recipes

Bamboo has been used for a variety of analyses: searches, unfolding, future
studies; data-driven or MC-driven; using MVAs/DNNs; …
→ fairly complete set of features and recipes collected, e.g. for:

▶ Data-driven background estimations
▶ Splitting an MC sample into sub-components
▶ Using user-defined functions or classes in C++ or python+Numba
▶ Producing cut flow reports, generate yield tables (Latex)
▶ Jet & MET variations
▶ Rochester muon momentum corrections
▶ …

(see backup)

16

https://bamboo-hep.readthedocs.io/en/latest/recipes.html


Performance, in practice

Example case: 150 plots of ∼ 50 bins, 70 variations each (out of which 25
on-the-fly jet variations)→ ∼ 10k Histo1D, 3k Define

Memory
▶ Batch mode (single graph): < 1.5 GB
▶ Sequential/parallel: ∼ 1 GB upfront, ≲ 10 MB for each additional RDF

Event throughput
▶ With systematics, single-threaded, reading from HDD through LAN: ∼ kHz
▶ 2–5x slower with 50–150 variations than without: much more efficient
than re-running event loop for every variation (even when restricting to
jet variations)

▶ Time to insight: few hours on batch system for full Run2: could be
better? tail of slow jobs, random FS failures spoil the picture…(use
intermediate skims?) → distributed RDF expected to help
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Sore points: from more to less Bamboo-specific

▶ Entry point = executable, results written to files→ no interactive
exploration possible (e.g. notebooks)

▶ Finding efficient patterns for implementing small
studies/changes/checks during review can be difficult

▶ Postprocessing of outputs: available metadata (e.g. in postProcess
method) helps, but manipulating TFile’s + THN’s is awkward
Get python boost-histograms, put everything in single pd.DataFrame?

▶ Default postprocessing not well suited for combining/comparing outputs
from different runs

▶ Abstractions: only interact with proxies, lazy event loop in RDF
→ interactively inspecting data, individual events not possible

▶ Debugging with jitted RDF is difficult (improvements soon?)
▶ Batch processing: too many manual inputs (job splitting), actions
(managing failed jobs) needed (distRDF to the rescue?)
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Ongoing, planned developments

▶ Finalize integration of distributed RDF
▶ Integrate RDF::Vary (automatic systematics in RDF)

→ simplify graph, lighter+faster!
▶ MVA evaluation: support SOFIE
▶ Incremental runs: every expression has a unique hash→ store them,
detect what changed w.r.t. a previous run, only re-process what changed
+ detect set of unique RDF graphs among all processed samples, re-use
existing graph on several samples (if ever possible in RDF)?

▶ Move beyond bambooRun as single entry point→ integrate with workflow
management tools?

▶ Easier postprocessing with pyPlotIt

Caveat: only one active maintainer…
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Documentation and examples

▶ Documentation
▶ Repository (includes examples)
▶ OpenData examples→ run on binder!
▶ lxplus demo with systematics (requires CMS access)

20

https://bamboo-hep.readthedocs.io/
https://gitlab.cern.ch/cp3-cms/bamboo
https://github.com/pieterdavid/bamboo-opendata-examples
https://gitlab.cern.ch/swertz/bambooexamples/-/blob/attf-review/


Conclusions

▶ RDataFrame: write physics, not loops
▶ Writing a full analysis from scratch using RDF still
requires re-inventing a lot of wheels

▶ RDF is (still quite) low level…Bamboo provides a high-level analysis
description language embedded in familiar Python

▶ Fast and efficient processing of stock NanoAODs, no custom intermediate
ntuples needed

▶ Not tied to CMS or NanoAOD: can be adapted to ∼ any format
▶ In use for 3 years, 6–7 analyses so far, ∼ 10–15 active users (AFAIK)

▶ Future hinges on finding additional developers…
▶ Some features upstreamed to RDF

▶ Join the discussion on Mattermost! (CMS only)

Thank you!

21
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Default postprocessing

▶ By default: write YAML config with list of plots
and files, and call PlotIt: C++ tool to produce
stacked plots using ROOT

▶ Fairly configurable (long list of options) but too
rigid at the same time: good for data vs. MC stack
+ ratio, not much else

▶ Plan: move to python-based pyPlotIt
▶ Re-use configuration file structure
▶ More flexible manipulations, stacks, ratios, …
▶ UHI-compatible, can be used with mplhep
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from matplotlib import pyplot as plt
import mplhep, plotit; from plotit import Stack
config, samples, plots, systematics, legend = plotit.loadFromYAML(cfgName

)
for p in plots:
expStack = Stack([smp.getHist(p) for smp in samples if smp.cfg.type=="MC"

])
obsStack = Stack([smp.getHist(p) for smp in samples if smp.cfg.type=="

DATA"])
mplhep.histplot(obsStack, histtype="errorbar", color="k")
mplhep.histplot(expStack.entries, stack=True, histtype="fill",
color=[e.style.fill_color for e in expStack.entries])
mplhep.cms.label(data=True, label="Internal", lumi=config.getLumi())

https://cp3-llbb.github.io/plotit/
https://pyplotit.readthedocs.io/en/latest/index.html
https://uhi.readthedocs.io/en/latest/
https://mplhep.readthedocs.io/


Data-driven background estimations

▶ Replace contribution of sample A/region SR with contribution from
sample B/region CR + applied weights (e.g. fake rate transfer factor)

datadriven:
chargeMisID:

uses: [ data ] # sample B
replaces: [ DY ] # sample A

nonprompt:
uses: [ data ]
replaces: [ TTbar ]

hasSameSignElEl = SelectionWithDataDriven.create(hasElEl, # common base selection
"hasSSDiEl", "chargeMisID",
cut=(diel[0].Charge == diel[1].Charge), # region SR
ddCut=(diel[0].Charge != diel[1].Charge), # region CR
ddWeight=p_chargeMisID(diel[0]) + p_chargeMisID(diel[1]),
enable=any("chargeMisID" in self.datadrivenContributions and

self.datadrivenContributions["chargeMisID"].usesSample(sample,
sampleCfg)))

▶ SelectionWithDataDriven.create similar to usual Selection.refine
▶ Resulting object behaves as any selection→ refine, make plots etc.



Calling user-defined custom functions or classes

▶ Declare function, wrap it in a proxy, use it to build expressions:

ROOT.gInterpreter.Declare("""
float computePDFWgtMean(const ROOT::VecOps::RVec<float>& weights) {

return ROOT::VecOps::Mean(weights)
}

""")

myFun = op.extMethod("computePDFWgtMean", returnType="float")
newSel = noSel.refine("avgWgt", weight=myFun(tree.LHEPdfWeight))

▶ Or use Numba:

import numpy as np
@ROOT.Numba.Declare(['RVec<float>'], 'float')
def computePDFWgtMean(weights):

return np.mean(weights)

myFun = op.extMethod("computePDFWgtMean", returnType="float")
newSel = noSel.refine("avgWgt", weight=myFun(tree.LHEPdfWeight))



Calling user-defined custom functions or classes

▶ Or use external code: myHeader.h

class MyCalc {
public:

MyCalc(std::string path) { ... }
evaluate(float pt) { ... }

};

▶ Then load dependencies:

bamboo.root.loadDependency(headers=myHeader.h, libraries=...)

▶ Finally, instantiate object and call its method:

myCalc = op.define("MyCalc", 'const auto <<name>> = MyCalc("file.root");')
myCorr = myCalc.evaluate(tree.Muon[0].pt)

▶ Note: <<name>> automatically replaced by Bamboo, makes sure symbols
are unique



Example of extending configuration file

▶ Include additional information, e.g. tag signal processes
▶ Single entry for all eras→ duplicate entry in customizeAnalysisCfg(),
add era tag to config and __era suffix to sample name

▶ Splitting sample into sub-components
▶ Handling systematic variations from alternative samples

TTTo2L2Nu_hdampUP_TuneCP5_13TeV-powheg-pythia8:
dbs:

2017UL: das:/TTTo2L2Nu_hdampUP_TuneCP5_13TeV-powheg-pythia8/
RunIISummer20UL17NanoAODv9-106X_mc2017_realistic_v9-v1/NANOAODSIM

2018UL: das:/TTTo2L2Nu_hdampUP_TuneCP5_13TeV-powheg-pythia8/
RunIISummer20UL18NanoAODv9-106X_upgrade2018_realistic_v16_L1v1-v1/
NANOAODSIM

subprocesses: ['ttB', 'ttcc', 'ttjj']
signal_subprocesses: ['ttB']
signal_tag: "powheg_5FS"
cross-section: *xs_tt_2l
syst: ['hdampup', 'TTTo2L2Nu_TuneCP5_13TeV-powheg-pythia8']
generated-events: genEventSumw



Systematic uncertainties: scale factors

▶ CMS’s correctionlib: JSON schema + reading library, recommended
method for reading scale factors & associated variations:

from bamboo.scalefactors import get_correction

elIDSF = get_correction("EGM_POG_SF_UL.json", "UL-Electron-ID-SF",
params={ "pt": lambda el: el.pt, "eta": lambda el: el.eta,

"year": "2018UL", "WorkingPoint": "Loose" },
systParam="ValType", systNomName="sf",
systName="elID", systVariations=("sfup", "sfdown"))
# resulting variations in bamboo: elIDup, elIDdown

looseEl = op.select(tree.Electron, lambda el: el.looseId)

withDiEl = noSel.refine("withDiEl",
cut=(op.rng_len(looseEl) >= 2),
weight=[ elIDSF(looseEl[0]), elIDSF(looseEl[1]) ])

▶ CorrectionSet object declared once to gInterpreter, can be reused
across samples

▶ Typically, evaluated SFs are always Define-d as a new column
→ avoid unnecessary re-evaluations

https://cms-nanoaod.github.io/correctionlib/


Systematic uncertainties: jet & MET

▶ Utility (now available as standalone package) to:
▶ Re-apply JECs, smear jets, compute JEC & JER variations (regular & fat)
▶ Propagate all those to MET (Type-1 MET)

▶ C++, RDF-friendly or standalone, python through pyROOT
▶ Originally based & validated on nanoAOD-tools implementation
▶ Bamboo: jets/MET kinematic variations are computed on-the-fly,
automatically propagated to selections & plots

from bamboo.analysisutils import configureJets
configureJets(tree._Jet, "AK4PFchs", jec="Summer19UL18_V5_MC",
smear="Summer19UL18_JRV2_MC",
jesUncertaintySources="Merged", regroupTag="V2",
splitJER=True, addHEM2018Issue=True)

▶ Caching of SF .txt files from JECDB→ will now move to correctionlib
▶ Need to centrally maintain these features – in this form or another
(out of scope for correctionlib?)

▶ Note: Bamboo can also read variations from postprocessed nanoAODs

https://gitlab.cern.ch/cp3-cms/CMSJMECalculators
https://github.com/cms-jet/JECDatabase/tree/master/textFiles


More details on JetMET tool

▶ Supported corrections:
▶ AK4 jets & fat jets: apply JEC (any levels), JER, uncertainties

(total/merged/split), JER uncertainty splitting, ad-hoc uncertainty for HEM18
▶ In addition, for fat jets: JMS, JMR, GMS, GMR, Puppi corrections
▶ Full Type-1 MET recipe
▶ EE2017 noise fix recipe for MET

▶ Seed is passed explicitly→ full reproducibility
▶ TODO: better handling of recipe evolution (e.g. EOY→ UL): new classes?
tag new version and deprecate the old?



More details on JetMET tool

▶ Config helper for instantation:
from CMSJMECalculators import config as calcConfigs
config = calcConfigs.JetVariations()
from CMSJMECalculators.jetdatabasecache import JetDatabaseCache
jrDBCache = JetDatabaseCache("JRDatabase", repository="cms-jet/JRDatabase")
config.ptResolutionSF = jrDBCache.getPayload(

"Summer16_25nsV1_MC", "SF", "AK4PFchs")
...
calc = config.create()

▶ Or create directly in C++:
auto calc = JetVariationsCalculator::create(jecParams, jesUncs, ...);

▶ Can be used:
▶ From C++ & from RDataFrame

df.Define("ak4JetVars", "calc.produce(Jet_pt, Jet_eta, ...)")

▶ From python through pyROOT
from CMSJMECalculators.utils import toRVecFloat, toRVecInt
jetVars = calc.produce(

toRVecFloat(tree.Jet_pt), toRVecFloat(tree.Jet_eta), ...)



Getting a specific variation

▶ Jet variations: original collection available as tree._Jet[``nominal''],
other variations directly accessible as tree._Jet[``jesTotalUp''] etc.
jet.idx always refer to index in original collection

▶ Get a specific variation for any expression:

triJets = op.combine(sortedJets, N=3)
XjjjCand = op.rng_min(triJets, lambda jjj:

op.abs(op.invariant_mass(jjj[0].p4 + jjj[1].p4 + jjj[2].p4) - mX))
leadCandBtag = XjjjCand[0].bTagDeepB

leadCandBtag_jesTotalUp = op.forSystematicVariation(leadCandBtag, "jesTotalUp")

▶ Useful for debugging, skims…



Analysis preservation

▶ Bamboo: analysis code should be kept outside of framework itself, in
separate Git repository

▶ bambooRun output folder→ contains version.yml file with Git commit of
analysis code (& Bamboo itself), and full list of command-line
arguments to bambooRun used to produce the results
→ all the information needed to reproduce the results

▶ Different levels of enforcement policies, chosen by user: “testing”
(default: no check, only print warning), “committed”, “tagged”, “pushed”

WARNING:bamboo.workflow:Running with commit 8ffc100 for config and module. Please
tag (and push) for better traceability



Other development ideas

▶ Proper type system for proxies, better operator overloading (e.g. RVec
broadcasting)

▶ Support indexed friend trees
▶ Control/restrict systematic variations at the selection or plot level
(current approach is “take-all”)
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